Sixth Form Scholarship Examination

Mathematics

Specimen

Your Name \qquad

Your Current School \qquad

Time allowed: $\mathbf{1}$ hour $\mathbf{3 0}$ minutes

Instructions:

- Calculators are NOT allowed.
- Answer all questions in the spaces provided. Except question 8 which should be done on a sheet of named graph paper and inserted into this booklet at the end
- Any extra sheets should be clearly labeled with your name and the question number and inserted into this booklet at the end
- Show all your working, credit can be given for this
- Marks for each question are given in brackets e.g. [2]

1. Write $0.0 \dot{3} \dot{4} \dot{1}$ as a fraction with integer numerator and denominator.
2. $\frac{2}{3}$ of the rectangle below is unshaded. What is the value of x ?

3. Solve the equation $3 x^{2}-14 x-5=0$.
4. Make r the subject of the following formulae:
a) $x=\frac{p r+v}{r-s}$
b) $\frac{1}{a}+\frac{1}{b}=\frac{1}{r}$
5. This is an equilateral triangle with side length 2

a) Find, as an exact square root, the height marked h
b) Calculate the area of the equilateral triangle. Again, give your answer as an exact square root.
c) 3 circular arcs are drawn from each vertex of the equilateral triangle to form the shape below:

Calculate the area of this shape, leave your answer in terms of π and exact square roots.
6. a) Simplify as far as possible:

$$
\frac{x+2}{x^{2}+5 x+6}
$$

b)
i. Factorise $x^{2}-1$
ii. Hence write the following as a single fraction in its simplest terms

$$
\frac{x+3}{x^{2}-1}-\frac{1}{x+1}
$$

7. A quadratic graph has the equation $y=a(x-b)^{2}+c$. It passes through $(0,9)$ and has its vertex at $(2,1)$. Calculate the values a, b and c. Hint: you should start by sketching the curve.
8. On the sheet of graph paper attached, sketch, on the same axes the graphs of :
a) $y=\cos x^{\circ}$
b) $y=\cos 2 x^{\circ}$
c) $y=3 \cos x^{\circ}$

You should label each graph clearly and use a scale of -360° to 360°
9. Bag A contains 2 black and 3 red discs. Bag B contains 3 black and 1 red disc. In an experiment, a bag is chosen at random and then a disc is pulled out of the bag, also at random.
a. Calculate the probability that the disc is red.
b. Given that the disc is red, find the probability that it came from bag A (Hint, imagine repeating the experiment 1000 times and then consider the distribution of outcomes)
10. Prove algebraically that the square of any odd number is always odd.
11. What is the last digit of 3^{2014} ? Explain your answer fully.

